Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral Unmixing: Geometrical, Statistical, and Sparse Regression-Based Approaches

Hyperspectral instruments acquire electromagnetic energy scattered within their ground instantaneous field view in hundreds of spectral channels with high spectral resolution. Very often, however, owing to low spatial resolution of the scanner or to the presence of intimate mixtures (mixing of the materials at a very small scale) in the scene, the spectral vectors (collection of signals acquire...

متن کامل

Hyperspectral Unmixing with Robust Collaborative Sparse Regression

Chang Li 1, Yong Ma 2,∗, Xiaoguang Mei 2, Chengyin Liu 1 and Jiayi Ma 2 1 School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China; [email protected] (C.L.); [email protected] (C.L.) 2 Electronic Information School, Wuhan University, Wuhan 430072, China; [email protected] (X.M.); [email protected] (J.M.) * Corresponden...

متن کامل

A Sparse Regression Approach to Hyperspectral Unmixing

Spectral unmixing is an important problem in hyperspectral data exploitation. It amounts at characterizing the mixed spectral signatures collected by an imaging instrument in the form of a combination of pure spectral constituents (endmembers), weighted by their correspondent abundance fractions. Linear spectral unmixing is a popular technique in the literature which assumes linear interactions...

متن کامل

Sparse Hyperspectral Unmixing

Given a set of mixed spectral vectors, spectral mixture analysis (or spectral unmixing) aims at estimating the number of reference materials, also called endmembers, their spectral signatures, and their fractional abundances. A semi-supervised approach to deal with the linear spectral unmixing problem consists in assuming that the observed spectral vectors are linear combinations of a small num...

متن کامل

Structured Sparse Method for Hyperspectral Unmixing

Hyperspectral Unmixing (HU) has received increasing attention in the past decades due to its ability of unveiling information latent in hyperspectral data. Unfortunately, most existing methods fail to take advantage of the spatial information in data. To overcome this limitation, we propose a Structured Sparse regularized Nonnegative Matrix Factorization (SS-NMF) method from the following two a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

سال: 2012

ISSN: 1939-1404,2151-1535

DOI: 10.1109/jstars.2012.2194696